
Note on side-channel attacks and their
countermeasures

In the last few years ciphers making use of table-lookups in large tables—and
most notably AES [12, 6]—have received a lot of bad publicity due to their vulner-
ability to cache attacks [15, 1, 13]. These attacks target the secret key by exploiting
the variable time that an AES computation takes due to the storage of the large ta-
ble in cache. From this one may conclude that algorithms that do not make use of
table-lookups are better suited for secure implementations. The subject of this note
is to point out that this is in general not the case, more particularly if we consider
attacks that exploit measurements of power consumption and electromagnetic radia-
tion. These attacks are relevant if one wants to perform cryptographic computations
involving a secret key in a device to which an adversary has physical access. As em-
ployees of STMicroelectronics and NXP, we have come across numerous such prod-
ucts and applications. Historically smart cards has been the first commercial product
to embed countermeasures against this kind of attacks but this is spreading to RFID,
electronic passport and more complex systems. More generally, note that the attacks
under consideration do not exploit an inherent weakness of an algorithm, but rather
a characteristic of the implementation. For this reason they are called side-channel
attacks as opposed to cryptanalytic attacks. Particularly good sources of information
on side channel attacks and countermeasures are the proceedings of the yearly CHES
conferences (http://www.chesworkshop.org/) and the text book [14].

As an example, we consider on the one hand a class of algorithms that do not make
use of table-lookups but instead of addition (or subtraction) modulo 2n, bitwise XOR,
shift and rotation. This class of algorithms is denoted by the acronym ARX (Addition-
Rotation-XOR) and seems hard to protect against certain side-channel attacks.

On the other hand, algorithms that restrict their choice of operations to bitwise
Boolean operations, and (cyclic) shifts can be protected much more efficiently if cer-
tain conditions are satisfied. We will illustrate this point with our SHA-3 submission
KECCAK[2].

1 Countermeasures against information leakage in power
and radiation

If electronic hardware performs computations, its power consumption in general de-
pends on the value of the data being processed. This is the case for CPUs but also
for ASICs and FPGA chips. Moreover, any electronic device emits electromagnetic
radiations that also depend on the data being processed. The attacks exiting these as-
pects are denoted by the terms power analysis and electromagnetic analysis. The general
set-up is that the attacker gets one or more traces of the measured power consump-
tion or electromagnetic radiation. If only a single trace suffices to mount an attack,
one speaks about simple power analysis (SPA) or simple electromagnetic analysis
(SEMA). However, the dependence is typically small and obscured by noise. This can
be compensated for by taking many traces, each one representing an execution of the
cryptographic primitive with different input values per trace. These many traces are
then subject to statistical methods to retrieve the key information. These attacks are

http://www.chesworkshop.org/


Note on side-channel attacks and their countermeasures

called differential power analysis (DPA) [8] and differential electromagnetic analysis
(DEMA). An important aspect in these attacks is that the traces must be aligned: they
must be combined in the time-domain such that corresponding computation steps
coincide between the different traces.

In DPA and DEMA one distinguishes between first order DPA/DEMA and higher
order DPA/DEMA. In first-order, the attacker is limited to considering single time
offsets of the traces. In m-th order the attacker may incorporate up to m time offsets
in the analysis. In this note we focus on protection against first-order DPA/DEMA.
Higher-order DPA/DEMA is usually applied to implementations with countermea-
sures against first-order DPA/DEMA. Higher-order attacks are in principle more
powerful but also much harder to implement [14].

In the light of these attacks, one must attempt implementing the cryptographic
primitives such that the effort (or cost) of the adversary for retrieving the key is too
high for her/him to be interesting. An important countermeasure is implementing
the cryptographic primitives such that the power consumption and electromagnetic
radiation leak as little as possible on the secret keys or data. Many side-channel at-
tacks have been devised and equally many countermeasures have been published.
Countermeasures can be implemented at several levels:

• at the transistor level: logical gates and circuits are built such that the informa-
tion leakage is reduced;

• at the program level: the order of operations can be randomized or dummy
instructions can be inserted randomly to make the alignment of traces more
difficult;

• at the algorithmic level: the operations of the cryptographic algorithm are com-
puted in such a way that the information leakage is reduced;

• at protocol level: the protocol is designed such that it limits the number of com-
putations an attacker can provoke with a given key.

As opposed to protection against cryptographic attacks, protection against side
channel attacks is never expected to be absolute: a determined attacker with a mas-
sive amount of resources will sooner or later be able to break an implementation.
The engineering challenge is putting in enough countermeasures such that the attack
becomes too expensive to be interesting. Products that offer a high level of security
typically implement countermeasures on multiple levels.

The countermeasures at transistor level are independent of the algorithm to be
implemented. They imply dedicated hardware for cryptography which takes more
area, requires dedicated industrialization processes and is in general more expen-
sive. Moreover, while these countermeasures may significantly reduce the informa-
tion leakage, there always remains some leakage.

The countermeasures at program level are partially dependent on the algorithm to
be implemented. Insertion of dummy instructions is possible in any algorithm while
changing the order of operations may be easier for some algorithms than for oth-
ers. This countermeasure is particularly efficient against higher-order DPA/DEMA
as there the signals must be aligned in multiple places and any misalignment severely
limits the effectiveness of attack.

The countermeasures at protocol level are also independent of the algorithm.
However, what can be done at this level depends on the requirements of the applica-
tion and in many cases the possibilities are limited.

2



Note on side-channel attacks and their countermeasures

Finally, the countermeasures at algorithmic level depend on the basic operations
used in the algorithm. This is the type of countermeasures where the choice of opera-
tions in the cryptographic primitive is relevant. In the remainder of this note we will
concentrate on countermeasures at this level.

2 Masking

Masking (sometimes also called blinding) is a countermeasure that offers protection
against DPA and DEMA. It consists of representing (part of) the input key and/or
data words in a cryptographic primitive by two or more shares (as in secret sharing)
where usually the sum or the XOR of the shares is equal to the intended value of the
word. Subsequently the program (or circuit) computes the cryptographic primitive
using the shares in a way that the intermediate results are never correlated to the ac-
tual (unmasked) intermediate values. Whether this is possible depends on the details
of the cryptographic primitive and the type of masking. In any case, to achieve decor-
relation, for each of the masked variables, all but one of its shares must be generated
(pseudo-)randomly for each execution of the cryptographic primitive. Clearly, the
generation of the shares, the masking operation of the input words and unmasking
operation of output, usually considered out of scope of DPA attacks, must also be
carefully implemented to limit information leakage. For masking to be effective, the
adversary shall have as little information as possible on the value of the shares.

Taking two shares offers protection against first-order DPA/DEMA. Providing
protection against m-th order DPA requires at least m + 1 shares. We will concen-
trate on the case of two shares offering protection against first order DPA/DEMA,
but most of our explanation remains valid for the case of more shares. We will denote
one share as the masked variable and the other as the mask.

Performing an operation on a variable in masked form is straightforward if the
type of masking is compatible with it. More particularly, if it is a group operation and
the masking scheme makes use of the same group operation, associativity permits
treating the masked variables and masks separately. If we represent the unmasked
variable x by the masked variable x′ and the mask rx such that x = x′ ∗ rx, we can
compute c′ and rc corresponding with c = a ∗ b as:

c′ = a′ ∗ b′ ,
rc = ra ∗ rb .

The two shares c′ and rc representing c can then be used to perform subsequent op-
erations.

In general this technique can be applied if the operation to be protected is linear
with respect to the masking scheme. As all separate operations are performed on
variables that have no correlation with the actual data a, b and c, this achieves resis-
tance against first order DPA. Note however that the operations on two shares must
be physically isolated from each other. For example, if a register containing a′ is loaded
with ra, the power consumption can depend on the number of bits switched (e.g. on
the Hamming weight of a′ ⊕ ra) and it is likely to leak information on a. This can be
solved by setting the register to zero in between. But clearly, care must be taken when
attempting to build side-channel resistant implementations.

3



Note on side-channel attacks and their countermeasures

3 Masking for ARX

For ARX two types of masking operations are appropriate:

• Arithmetic masking: x = x′+ rx mod 2n compatible with addition and subtrac-
tion

• Boolean masking: x = x′ ⊕ rx compatible with XOR, rotation and shift

When variables are added or subtracted, they must be available in arithmetic mask-
ing form and so will be the result; when they are XORed, rotated or shifted, they
must be available in Boolean masking form and so will be the result. The problem is
now when variables undergo operations of different types; namely when we have a
variable in Boolean masking form and it must be added to another variable, or vice
versa, when we have a variable in arithmetic masking form and it must be rotated or
XORed to another variable.

The only solution to that problem identified up to now is converting a variable in
Boolean masking form to arithmetic masking form or vice versa when needed. The
number of such conversions required depends on the way the different operations
are alternated in the algorithm. This can be quite often as most ARX algorithms get
their non-linearity exactly from this alternation.

When performing these conversions, it is equally important not to leak informa-
tion on the (unmasked) variables being manipulated as in the regular operations. A
conversion algorithm is denoted as secure if none of the manipulated variables has
correlation with the unmasked variable. This problem has been investigated and al-
gorithms are proposed by Jean-Sébastien Coron, Louis Goubin and Alexei Tchulkine
in a series of papers published at CHES conferences: [3], [7] and [4]. In the following
subsections we summarize the results of these papers. We invite the interested reader
to study these papers in detail.

3.1 Boolean to arithmetic masking

In [7] Louis Goubin proposes a secure conversion from Boolean to arithmetic masking
that converts a couple (x′, r) with x = x′⊕ r to (X′, r) with x = X′+ r. This algorithm
takes 7 elementary operations (5 XORs and 2 subtractions), 1 random generation and
2 auxiliary variables.

Note that the computational cost of this conversion is significantly higher than
performing an ARX operations on a masked variable.

3.2 Arithmetic to Boolean masking

In [7] Louis Goubin proposed a secure conversion from arithmetic to Boolean mask-
ing that converts a couple of n-bit words (X′, r) with x = X′ + r to (x′, r) with
x = x′ ⊕ r. The algorithm takes 5(n + 1) elementary operations, 1 random gener-
ation and 3 auxiliary variables. For n = 8, 32 and 64 this implies 45, 165 and 325
elementary operations respectively. Clearly applying this conversion algorithm may
slow down an implementation by one or two orders of magnitude.

In [4], Jean-Sébastien Coron and Alexei Tchulkine presented an alternative algo-
rithm achieving the same result but taking less operations. This algorithm makes use
of precomputed tables and there is a trade-off in the size of the tables and the number

4



Note on side-channel attacks and their countermeasures

of operations to be performed. In any case, the longer the words, the more opera-
tions. For example, for 32-bit words and a processor with 32-bit word length, taking
a 16-byte table per mask value r still leads to an arithmetic to Boolean conversion that
takes 40 elementary operations. When the words are 64-bit long, doing it in 40 op-
erations on a 64-bit processor requires 512 bytes of table per mask value. Moreover,
the cost of computing the tables must be taken into account. While this is certainly
an important efficiency improvement with respect to the method without the lookup
tables, the overhead remains very important.

Additionally, there is a potential security issue with the use of the same value r
during many computations. A conversion table is specific for a given value of the
mask r, so just before converting from arithmetic to Boolean masking form, a variable
x must be available in the form x = x′ + r. This, and the fact that the conversion table
must be computed in the first place, implies numerous computations with the mask
r. In general these computations will leak information that may be used to retrieve
the value of r. And once this value is known, the masking loses its effectiveness.

4 Masking for nonlinear bitwise Boolean operations

There are algorithms that can be implemented with only bitwise XOR, (cyclic) shifts,
bitwise NOT and nonlinear bitwise Boolean operations such as bitwise AND and
OR. For words longer than 1 bit these are not group operations and no compatible
masking operation exists. However, one can apply Boolean masking. In [5] we have
shown that this can be done easily if the algorithm is put in a form such that the AND
(and OR) operations occur in combination with an XOR (with concatenation denoting
bitwise AND and ⊕ denoting bitwise XOR):

a = a⊕ bc .

Given the Boolean masking form, this can then be computed as follows:

a′ = a′ ⊕ b′c′ ⊕ b′rc ,
ra = ra ⊕ rbrc ⊕ rbc′ .

with the righthand expressions evaluated left-to-right. It follows that the single XOR
and single AND in the plain implementation grows to 4 XORs and 4 ANDs in the
masked implementation. A similar argument applies for the OR. This generalizes
nicely to protection against higher-order DPA/DEMA. We refer to [5] for some more
discussion on this and the distinguishing power of second order DPA as compared to
first order DPA.

4.1 The example of KECCAK

KECCAK can be implemented with only bitwise XORs, AND and NOT operations
and rotations. The nonlinear operations in KECCAK are the same as those in BASEK-
ING, the cipher that is the subject of [5] and hence the techniques shown there can
be readily applied. Masking doubles the number of XOR and rotation operations
and multiplies the number of combined XOR/AND operations by four. From this it
follows that masking KECCAK triples the number of bitwise Boolean operations and
doubles the number of rotations.

5



Note on side-channel attacks and their countermeasures

5 Dedicated hardware implementations

Implementing an algorithm in hardware such that it offers protection against side-
channel attacks raises even more concerns. The masking conversion problem for ARX
remains a problem. One approach could be to implement the conversion algorithms
in hardware. In doing this one should take care that the order in which the opera-
tions are performed in the conversion algorithms are respected. More particularly,
the presence of glitches may result in an information leakage that is not modeled by
the masking theory and a masked implementation may become vulnerable [9, 10].

This concern also exists for algorithms that only make use of bitwise Boolean
operations and (cyclic) shifts. Recently Svetla Nikova, Vincent Rijmen and Martin
Schäffler presented in [11] a masking technique that offers resistance against side-
channel attacks even in the presence of glitches. This technique consists of repre-
senting the data elements with three (or more) shares and makes sure that in any
computation at least one of the share is not taken as input. This technique is well
suited for algorithms in which the nonlinear components can be expressed as nonlin-
ear Boolean functions with at least 3, but preferably no more, variable. As such it is
very well suited for KECCAK, with its single nonlinear gate per bit in the round func-
tion. In ARX algorithms the only nonlinear operations (in GF(2)) are the additions.
One may consider implementing them in the simplest bitwise way, with the bits of
c = a + b computed as ci = ai ⊕ bi ⊕ di with di the carry bit. This is a linear expres-
sion and poses no problem for implementing in masked form. The computation of
the carry bit is given by the majority function of ai−1, bi−1 and di−1 and is also suited
to be implemented with the techniques proposed in [11]. The disadvantage is that
with this choice the computation of the bits of c is done in a serial way, leading to
large gate delays.

6 Conclusions

In this note we have addressed some issues that arise when trying to implement cryp-
tographic primitives that should offer resistance against side channel attacks. Al-
though they do not make use of table-lookups, ARX algorithms may be hard or ex-
pensive to protect against side channel attacks, while this appears to be significantly
easier for algorithms that only make use of bitwise Boolean operations and (cyclic)
shifts.

The KECCAK Team, May 2009
Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

References

[1] D. J. Bernstein, Cache-timing attacks on AES, 2005, Document ID:
cd9faae9bd5308c440df50fc26a517b4, http://cr.yp.to/papers.html#
cachetiming.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, KECCAK specifications,
NIST SHA-3 Submission, October 2008, http://keccak.noekeon.org/.

6

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://keccak.noekeon.org/


Note on side-channel attacks and their countermeasures

[3] J. Coron and L. Goubin, On Boolean and arithmetic masking against differential power
analysis, CHES (Ç. K. Koç and C. Paar, eds.), Lecture Notes in Computer Science,
vol. 1965, Springer, 2000, pp. 231–237.

[4] J. Coron and A. Tchulkine, A new algorithm for switching from arithmetic to Boolean
masking, in Walter et al. [16], pp. 89–97.

[5] J. Daemen, M. Peeters, and G. Van Assche, Bitslice ciphers and power analysis at-
tacks, Fast Software Encryption 2000 (B. Schneier, ed.), Lecture Notes in Com-
puter Science, vol. 1978, Springer, 2000, pp. 134–149.

[6] J. Daemen and V. Rijmen, The design of Rijndael — AES, the advanced encryption
standard, Springer-Verlag, 2002.

[7] L. Goubin, A sound method for switching between Boolean and arithmetic masking,
CHES (Ç. K. Koç, D. Naccache, and C. Paar, eds.), Lecture Notes in Computer
Science, vol. 2162, Springer, 2001, pp. 3–15.

[8] P. C. Kocher, J. Jaffe, and B. Jun, Differential power analysis, CRYPTO (M. J. Wiener,
ed.), Lecture Notes in Computer Science, vol. 1666, Springer, 1999, pp. 388–397.

[9] S. Mangard, T. Popp, and B. M. Gammel, Side-channel leakage of masked CMOS
gates, CT-RSA (A. Menezes, ed.), Lecture Notes in Computer Science, vol. 3376,
Springer, 2005, pp. 351–365.

[10] S. Mangard, N. Pramstaller, and E. Oswald, Successfully attacking masked AES
hardware implementations, CHES (J.R. Rao and B. Sunar, eds.), Lecture Notes in
Computer Science, vol. 3659, Springer, 2005, pp. 157–171.

[11] S. Nikova, V. Rijmen, and M. Schläffer, Secure hardware implementation of non-
linear functions in the presence of glitches, ICISC (P. J. Lee and J. H. Cheon, eds.),
Lecture Notes in Computer Science, vol. 5461, Springer, 2008, pp. 218–234.

[12] NIST, Federal information processing standard 197, advanced encryption standard
(AES), November 2001.

[13] D. A. Osvik, A. Shamir, and E. Tromer, Cache attacks and countermeasures: The case
of AES, CT-RSA (D. Pointcheval, ed.), Lecture Notes in Computer Science, vol.
3860, Springer, 2006, pp. 1–20.

[14] E. Oswald S. Mangard and T. Popp, Power analysis attacks — revealing the secrets
of smartcards, Springer-Verlag, 2007.

[15] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi, Cryptanalysis of DES
implemented on computers with cache, in Walter et al. [16], pp. 62–76.

[16] C. D. Walter, Ç. K. Koç, and C. Paar (eds.), Cryptographic hardware and embedded
systems - ches 2003, 5th international workshop, cologne, germany, september 8-10,
2003, proceedings, Lecture Notes in Computer Science, vol. 2779, Springer, 2003.

7


	Countermeasures against information leakage in power and radiation
	Masking
	Masking for ARX
	Boolean to arithmetic masking
	Arithmetic to Boolean masking

	Masking for nonlinear bitwise Boolean operations
	The example of Keccak

	Dedicated hardware implementations
	Conclusions

